Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.10.22272213

ABSTRACT

Background: The COVID-19 pandemic remains a global public health concern. Advances in rapid sequencing has led to an unprecedented level of SARS-CoV-2 whole genome sequence (WGS) data and sharing of sequences through global repositories that has enabled almost real-time genomic analysis of the pathogen. WGS data has been used previously to group genetically similar viral pathogens to reveal evidence of transmission, including methods that identify distinct clusters on a phylogenetic tree. Identifying clusters of linked cases can aid in the regional surveillance and management of the disease. In this study, we present a novel method for producing stable genomic clusters of SARS-CoV-2 cases, cov2clusters, and compare the sensitivity and stability of our approach to previous methods used for phylogenetic clustering using real-world SARS-CoV-2 sequence data obtained from British Columbia, Canada, Results: We found that cov2clusters produced more stable clusters than previously used phylogenetic clustering methods when adding sequence data through time, mimicking an increase in sequence data through the pandemic. Our method also showed high sensitivity when compared to epidemiologically informed clusters. These clusters often contained a high number of cases that were identical or near identical genetically. Conclusions: This new approach presented here allows for the identification of stable clusters of SARS-CoV-2 from WGS data. Producing high-resolution SARS-CoV-2 clusters from sequence data alone can a challenge and, where possible, both genomic and epidemiological data should be used in combination.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.23.22271355

ABSTRACT

Estimating key aspects of transmission is crucial in infectious disease control. Serial intervals - the time between symptom onset in an infector and infectee - are fundamental, and help to define rates of transmission, estimates of reproductive numbers, and vaccination levels needed to prevent transmission. However, estimating the serial interval requires knowledge of individuals' contacts and exposures (who infected whom), which is typically obtained through resource-intensive contact tracing efforts. We develop an alternate framework that uses virus sequences to inform who infected whom and thereby estimate serial intervals. The advantages are many-fold: virus sequences are often routinely collected to support epidemiological investigations and to monitor viral evolution. The genomic approach offers high resolution and cluster-specific estimates of the serial interval that are comparable with those obtained from contact tracing data. Our approach does not require contact tracing data, and can be used in large populations and over a range of time periods. We apply our techniques to SARS-CoV-2 sequence data from the first two waves of COVID-19 in Victoria, Australia. We find that serial interval estimates vary between clusters, supporting the need to monitor this key parameter and use updated estimates in onward applications. Compared to an early published serial interval estimate, using cluster-specific serial intervals can cause estimates of the effective reproduction number Rt to vary by a factor of up to 2-3. We also find that serial intervals estimated in settings such as schools and meat processing/packing plants tend to be shorter than those estimated in healthcare facilities.


Subject(s)
COVID-19 , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL